185 research outputs found

    Reconstructing fully-resolved trees from triplet cover distances

    Get PDF
    It is a classical result that any finite tree with positively weighted edges, and without vertices of degree 2, is uniquely determined by the weighted path distance between each pair of leaves. Moreover, it is possible for a (small) strict subset L of leaf pairs to suffice for reconstructing the tree and its edge weights, given just the distances between the leaf pairs in L. It is known that any set L with this property for a tree in which all interior vertices have degree 3 must form a cover for T {that is, for each interior vertex v of T, L must contain a pair of leaves from each pair of the three components of T ̶ v. Here we provide a partial converse of this result by showing that if a set L of leaf pairs forms a cover of a certain type for such a tree T then T and its edge weights can be uniquely determined from the distances between the pairs of leaves in L. Moreover, there is a polynomial-time algorithm for achieving this reconstruction. The result establishes a special case of a recent question concerning `triplet covers', and is relevant to a problem arising in evolutionary genomics

    Distinguished minimal topological lassos

    Get PDF
    The ease with which genomic data can now be generated using Next Generation Sequencing technologies combined with a wealth of legacy data holds great promise for exciting new insights into the evolutionary relationships between and within the kingdoms of life. At the sub-species level (e.g. varieties or strains) certain edge weighted rooted trees with leaf set the set XX of organisms under consideration are often used to represent them. Called Dendrograms, it is well-known that they can be uniquely reconstructed from distances provided all distances on XX are known. More often than not, real biological datasets do not satisfy this assumption implying that the sought after dendrogram need not be uniquely determined anymore by the available distances with regards to topology, edge-weighting, or both. To better understand the structural properties a set \cL\subseteq {X\choose 2} has to satisfy to overcome this problem, various types of lassos have been introduced. Here, we focus on the question of when a lasso uniquely determines the topology of a dendrogram, that is, it is a topological lasso for it's underlying tree. We show that any set-inclusion minimal topological lasso for such a tree TT can be transformed into a structurally nice minimal topological lasso for TT. Calling such a lasso a distinguished minimal topological lasso for TT we characterize them in terms of the novel concept of a cluster marker map for TT. In addition, we present novel results concerning the heritability of such lassos in the context of the subtree and supertree problems

    A matroid associated with a phylogenetic tree

    Get PDF
    A (pseudo-)metric D on a finite set X is said to be a `tree metric' if there is a finite tree with leaf set X and non-negative edge weights so that, for all x,y ∈X, D(x,y) is the path distance in the tree between x and y. It is well known that not every metric is a tree metric. However, when some such tree exists, one can always find one whose interior edges have strictly positive edge weights and that has no vertices of degree 2, any such tree is 13; up to canonical isomorphism 13; uniquely determined by D, and one does not even need all of the distances in order to fully (re-)construct the tree's edge weights in this case. Thus, it seems of some interest to investigate which subsets of X, 2 suffice to determine (`lasso') these edge weights. In this paper, we use the results of a previous paper to discuss the structure of a matroid that can be associated with an (unweighted) X-tree T defined by the requirement that its bases are exactly the `tight edge-weight lassos' for T, i.e, the minimal subsets of X, 2 that lasso the edge weights of T

    Spaces of phylogenetic networks from generalized nearest-neighbor interchange operations

    Get PDF
    Phylogenetic networks are a generalization of evolutionary or phylogenetic trees that are used to represent the evolution of species which have undergone reticulate evolution. In this paper we consider spaces of such networks defined by some novel local operations that we introduce for converting one phylogenetic network into another. These operations are modeled on the well-studied nearest-neighbor interchange (NNI) operations on phylogenetic trees, and lead to natural generalizations of the tree spaces that have been previously associated to such operations. We present several results on spaces of some relatively simple networks, called level-1 networks, including the size of the neighborhood of a fixed network, and bounds on the diameter of the metric defined by taking the smallest number of operations required to convert one network into another.We expect that our results will be useful in the development of methods for systematically searching for optimal phylogenetic networks using, for example, likelihood and Bayesian approaches

    A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    Full text link
    Recently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of network slightly more general than a phylogenetic tree - from triplets. Our algorithm has been made publicly available as the program LEV1ATHAN. It combines ideas from several known theoretical algorithms for phylogenetic tree and network reconstruction with two novel subroutines. Namely, an exponential-time exact and a greedy algorithm both of which are of independent theoretical interest. Most importantly, LEV1ATHAN runs in polynomial time and always constructs a level-1 network. If the data is consistent with a phylogenetic tree, then the algorithm constructs such a tree. Moreover, if the input triplet set is dense and, in addition, is fully consistent with some level-1 network, it will find such a network. The potential of LEV1ATHAN is explored by means of an extensive simulation study and a biological data set. One of our conclusions is that LEV1ATHAN is able to construct networks consistent with a high percentage of input triplets, even when these input triplets are affected by a low to moderate level of noise
    • …
    corecore